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Abstract

From basic assumptions of viscoelastic constitutive relations and weight residual techniques a Boundary Element

procedure is achieved for both Kelvin and Boltzmann models. Imposing spatial approximations and adopting con-

venient kinematical relations for strain velocities, a system of time differential equations is achieved. This system is

solved adopting linear approximations for displacements, resulting in a time marching methodology. This approach

avoids the use of relaxation functions and makes easier changes in boundary conditions along time, natural or essential.

An important feature of the resulting technique is the absence of domain discretizations, which simplify the treatment of

problems involving infinite domains (tunnels and cavities inside the soil). Some examples are shown in order to

demonstrate the accuracy and stability of the technique when compared to analytical solutions. � 2002 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

In some recent works (see e.g. Mesquita et al. (2001) and Mesquita and Coda (2002, 2001)) the authors
developed a new time marching process for both Finite Element Method (FEM) and Boundary Element
Method (BEM) to solve viscoelastic problems. These formulations are based on the differential constitutive
relation for Kelvin and Boltzmann viscoelastic models. They produce time differential systems of equations,
solved by an appropriate time marching process. The resulting algorithms are able to solve static visco-
elastic problems with any load time dependence and boundary conditions. However, at that time, the BEM
formulation was not completely developed, i.e., it was necessary to perform domain integrals (using internal
cells) in order to consider the viscous effects.
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The novelty and main objective of this paper is avoiding internal cells, resulting in a viscoelastic
Boundary Element formulation performing discretizations only at the boundary of the analysed body. This
improvement is very important because it reduces the amount of variables to be computed. It makes easy
the treatment of infinite and semi-infinite viscoelastic bodies under loading or material extraction.
Another feature of the developed formulation is that, for Boltzmann model, the total time-depen-

dent displacements and stresses are achieved directly from the time marching process, not by summation
of the instantaneous and viscous uncoupled parts (see e.g. Munaiar Neto (1998) and Fairbaim et al.
(1995)).
The formulation proposed here is quite different from the ones usually found in the literature. The most

of the works developed so far as follows, basically, three main procedures. All of them are based on re-
laxation functions, providing a time-dependent constitutive relation (see e.g. Lemaitre and Chaboche
(1990), Fl€uugge (1967), Sobotka (1984) and Christensen (1982)).
The first procedure is based on the use of relaxation functions together with a convenient incremental

scheme, where the convolutional aspect of the viscous behaviour is transformed into discrete contributions
properly added to the elastic response (see e.g. Carpenter (1972), Chen et al. (1993), Chen and Lin (1982),
Argyris et al. (1979), Sensale et al. (2001), Liu et al. (2000) and Liu (1994)). The second available formu-
lation follows the same scheme applied to viscoplastic analysis (see e.g. Munaiar Neto (1998), Fairbaim
et al. (1995), Perzyna (1963), Owen and Damjanic (1982) and Argyris et al. (1991)), in which the viscous
characteristics are incorporated to the effective stress–strain relation by means of relaxation functions,
leading to incremental techniques.
The third one provides a Laplace–Carson transformation of the viscoelastic problem to an equiva-

lent elastic one. After solving the transformed problem, a numerical inversion is performed recovering the
desired time domain behaviour (see e.g. Lemaitre and Chaboche (1990)).
Regarding the mentioned procedures, some brief remarks can be made. The last technique is appropriate

to solve problems in which the nature of boundary conditions does not change along time. The first and
second procedures are based on quasi-static incremental schemes where the time behaviour of the solution
is recovered by stress decay, therefore, imposing external loads with arbitrary time dependence presents
some difficulties.
The main difference of the proposed scheme and the ones available in literature is the time solution. The

use of incremental methods based on relaxation functions assumes a known behaviour (usually constant) of
the total stress during a load increment. From this assumption, one solves locally the time differential stress/
strain relation achieving the viscous contribution to the body behaviour. This contribution is applied on the
equilibrium equation as a correction term. The proposed formulation assumes a kinematical relation for
strain velocity, i.e., relates strain velocity to material velocity. From this relation a global time differential
system of equation is achieved and properly solved.
At the end of this paper, an example section is provided. Various examples are shown in order to

demonstrate the accuracy and stability of the formulation. Analytical solutions are taken for comparison
because they are the natural accuracy reference parameter. It is not possible, from the consulted literature,
to compare the performance of this technique with others, because no data about time processing or
stability are given in references (see e.g. Sensale et al. (2001), Liu et al. (2000) and Liu (1994)).
Along all text Einstein notation is adopted.

2. Basic relations for viscoelasticity

This section is divided into two main parts, one related to the Kelvin model and the other related to the
Boltzmann standard relations.
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2.1. Kelvin model

Using rheological models defined in the uniaxial space is the usual way adopted to describe the visco-
elastic behaviour of solids. A simple representation, very often adopted to describe this kind of behaviour,
is the Kelvin–Voigt viscoelastic, Fig. 1. The understanding of this simple model is a basic step to the de-
velopment of more complicated ones, as for example the Boltzmann model described in the next item.
From Fig. 1, the following relations are stated:

eij ¼ eeij ¼ evij; ð1Þ

rij ¼ reij þ rvij; ð2Þ

where e and r are the strain and stress tensors; the Cartesian co-ordinates are represented by subscripts
i and j, while the superscript v and e represent viscous and elastic parts, respectively.
The elastic stress can be written in terms of strain components, as follows:

reij ¼ Clm
ij eelm ¼ Clm

ij elm: ð3Þ

Similarly, the following relation gives the viscous stress components:

rvij ¼ glm
ij _ee

v
lm ¼ glm

ij _eelm: ð4Þ

In Eqs. (3) and (4), Clm
ij and glm

ij contain the elastic compliance factors and the viscous constitutive pa-
rameters, respectively, defined as follows:

Clm
ij ¼ kdijdlm þ lðdildjm þ dimdjlÞ; ð5Þ

glm
ij ¼ hkkdijdlm þ hllðdildjm þ dimdjlÞ; ð6Þ

where k and l are Lam�ee’s constants, given by:

k ¼ mE
ð1þ mÞð1� 2mÞ ; ð7Þ

l ¼ G ¼ E
2ð1þ mÞ ; ð8Þ

in which E and m are Young’s modulus and Poisson ratio, respectively, while hk and hl are the hydrostatic
and deviatoric viscosity coefficients.

Fig. 1. Kelvin–Voigt viscoelastic model (uniaxial representation).
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Replacing Eqs. (3) and (4) into Eq. (2) gives

rij ¼ Clm
ij elm þ glm

ij _eelm: ð9aÞ

In this work, a further simplification is assumed, i.e., hk ¼ hl ¼ c, in order to obtain only boundary
values at the integral equations, see Section 3.

rij ¼ Clm
ij elm þ cClm

ij _eelm: ð9bÞ

Viscous effects should be incorporated into the global equilibrium equation of the body taking into
account the non-local characteristics of the stresses. Moreover, the viscous characteristics of the body must
satisfy boundary conditions together with the elastic ones.
In order to fulfil these requirements one can write properly the actual equilibrium equation for an in-

finitesimal part of a general viscoelastic body, as follows:

rij;i þ bj ¼ q€uuj þ c _uuj ð10Þ

or

reij;i þ rvij;i þ bj ¼ q€uuj þ c _uuj; ð11Þ

where bj is the body force acting in j direction.
Note that Eq. (11) exhibits explicitly the viscous stress term which plays an important role in the body

equilibrium. As in this work the dynamic effects, inertia forces and friction, will not be considered, ex-
pression (11) should be rewritten as:

reij;i þ rvij;i þ bj ¼ 0: ð12Þ

2.2. Boltzmann model

Another representation employed to describe the mechanical behaviour of viscoelastic materials, stress/
strain constitutive relation, is the so-called standard Boltzmann model. This model is more general than the
previous one, and can be described in a uniaxial representation as illustrated in Fig. 2.
This model is represented by a serial arrangement of a Kelvin–Voigt model and an elastic relation. It can

reproduce both the instantaneous and the viscous behaviour of a specific material.

Fig. 2. Boltzmann viscoelastic model (uniaxial representation).
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It is easy to observe, see Fig. 2, that the stress level for each part of the model, elastic and viscoelastic,
is the same,

rij ¼ reij ¼ rveij ; ð13Þ

where rij, reij, and rveij are, respectively, total, elastic and viscoelastic stress parts. The total strain can be
decomposed into its elastic and viscoelastic parts, i.e.:

elm ¼ eelm þ evelm: ð14Þ

From Fig. 2, one may observe that the viscoelastic stress is the summation of a viscous and an elastic
part, as follows:

rveij ¼ relij þ rvij; ð15Þ

where rvij is the viscous part and relij is the elastic part of the stress developed in the Kelvin–Voigt fragment
of the Boltzmann model.
From the previous equations, one is able to define the differential constitutive relation necessary to build

the desired boundary integral equations, as described in Appendix A:

rqs ¼
EveEe

Eve þ Ee

� �eCC ck
qs eck þ

EeEve
Eve þ Ee

� �
~ggck
qs _eeck �

Eve
EveEe

� �
~ggij
qs
eDDck

ij _rrck; ð16Þ

where eCClm
ij , ~gg

ck
qs and

eDDck
ij are the dimensionless constitutive tensor, the dimensionless viscoelastic compliance

tensor and the inverse of the dimensionless constitutive tensor, respectively (see Appendix A).
In order to write an integral statement with only boundary values it is necessary to impose the sim-

plification hk ¼ hl ¼ c. In this way expression (16) turns into:

rij ¼
EveEe

Eve þ Ee

� �eCClm
ij elm þ cEveEe

Eve þ Ee

� �eCClm
ij _eelm � cEve

EveEe

� �
_rrij: ð17Þ

This is the general rheological differential relation for the Boltzmann model. More complicate rhe-
ological models can be introduced following similar procedures, as the one employed in Appendix A, to
achieve Eq. (17).

3. Integral equations

The BEM is based on boundary integral equations. In Section 3.1, it will be developed the integral
statement for Kelvin model, due to its simplicity. After that, the procedure is extended to the Boltzmann
model.

3.1. Kelvin model

3.1.1. Displacement representation
The viscoelastic integral equation for boundary or internal points is obtained here using the weighting

residual technique on the differential equilibrium equation (12) written in the following form:

rij;j þ bi ¼ 0: ð18Þ

The error present in Eq. (18), when an approximate solution is adopted, can be weighted by a proper
function. In this work, the Kelvin fundamental solution for elastic infinite body is adopted. Eq. (18) is
weighted over the analysed domain X, as follows:
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Z
X
u�kiðrij;j þ biÞdX ¼ 0; ð19Þ

where u�ki is the Kelvin fundamental solution. It represents the effect of a unit concentrate load applied at
a point located in an infinite domain. Applying the divergence theorem on the first term of Eq. (19), one
achieves:Z

C
u�kirijnj dC �

Z
X
u�ki;jrij dX þ

Z
X
u�kibi dX ¼ 0; ð20Þ

where C is the boundary of the analysed body and nj is the outward normal vector component. Knowing
that, rijnj ¼ pi and that u�ki;jrij ¼ e�kijrij, where e�kij is the strain fundamental term, Eq. (20) turns intoZ

C
u�kipi dC �

Z
X

e�kijrij dX þ
Z

X
u�kibi dX ¼ 0: ð21Þ

This equation is the starting point to obtain the viscoelastic integral representations. Imposing the visco-
elastic relations, Eq. (9b), on Eq. (21), resultsZ

C
u�kipi dC �

Z
X

e�kijC
lm
ij elm dX �

Z
X

e�kijcC
lm
ij _eelm dX þ

Z
X
u�kibi dX ¼ 0: ð22Þ

Knowing that

e�kijC
lm
ij elm ¼ r�

klmelm ¼ r�
klmul;m ¼ r�

kijui;j; ð23Þ

e�kijcC
lm
ij _eelm ¼ cr�

klm _eelm ¼ cr�
klm _uul;m ¼ cr�

kij _uui;j: ð24Þ

Eq. (22) turns intoZ
C
u�kipi dC �

Z
X

r�
kijui;j dX � c

Z
X

r�
kij _uui;j dX þ

Z
X
u�kibi dX ¼ 0: ð25Þ

Integrating by parts, the second and third terms of Eq. (25) one achievesZ
C
u�kipi dC �

Z
C

r�
kijnjui dC þ

Z
X

r�
kij;jui dX � c

Z
C

r�
kijnj _uui dC þ c

Z
X

r�
kij;j _uui dX þ

Z
X
u�kibi dX ¼ 0: ð26Þ

Eq. (26) can be rewritten by using the fundamental equilibrium equation, i.e.,

r�
kij;j ¼ �dðp; sÞdki; ð27Þ

where dðp; sÞ is Dirac’s Delta distribution, s is a field point and p is the source location. Applying Eq. (27)
into Eq. (26), taking into consideration Dirac’s Delta properties and that r�

kijnj ¼ p�ki, results

CkiuiðpÞ þ cCki _uuiðpÞ ¼
Z

C
u�kipi dC �

Z
C
p�kiui dC � c

Z
C
p�ki _uui dC þ

Z
X
u�kibi dX: ð28Þ

The term Cki is the same obtained in the elastostatic formulations and can be found in standard Boundary
Element references (see e.g. Brebbia et al. (1984) and Brebbia and Dominguez (1992)). Eq. (28) is the al-
ternative viscoelastic integral representation for the Kelvin–Voigt model. The body force domain integral
can be easily transformed to its boundary representation, resulting an expression written exclusively for
boundary values (see e.g. Coda and Venturini (1998)). If the body force bi is constant, the explicit integral
expression isZ

X
u�kibi dX ¼ bi

Z
X
u�ki dX ¼ bi

Z
h

Z
r
u�kirdrdh ¼ bi

Z
C

Z
r
u�kirdr

1

r
or
on
dC ¼ bi

Z
C
B�
ki dC: ð29Þ
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For Kelvin fundamental solution, B�
ki is given by

B�
ki ¼

r
16pGð1� mÞ 4mð

�
� 3Þ ln r

�
� 1
2

�
dki þ r;k r;i

�
or
on

: ð30Þ

Rewriting Eq. (28) results

CkiuiðpÞ þ cCki _uuiðpÞ ¼
Z

C
u�kipi dC �

Z
C
p�kiui dC � c

Z
C
p�ki _uui dC þ bi

Z
C
B�
ki dC: ð31Þ

3.1.2. Stress integral representation for internal points
To write the stress integral representation for internal points one starts by achieving the strain integral

representation. At internal points the displacement integral representation is given by

ukðpÞ þ c _uukðpÞ ¼
Z

C
u�kipi dC �

Z
C
p�kiui dC � c

Z
C
p�ki _uui dC þ bi

Z
C
B�
ki dC: ð32Þ

The kinematical relation for small strains, is adopted:

eke ¼ 1
2
ðuk;e þ ue;kÞ: ð33Þ

Applying the above definition on Eq. (32) and considering that the derivatives are done with respect to the
source point location, one finds

ekeðpÞ þ c _eekeðpÞ ¼
Z

C
e�kiepi dC �

Z
C
p̂p�kieui dC � c

Z
C
p̂p�kie _uui dC þ bi

Z
C
B̂B�
kie dC: ð34Þ

The terms p̂p�kie, e�kie and B̂B�
kie are defined in Appendix C. The total stress is obtained using the constitutive

relation (9b) over Eq. (34), resulting

reqqðpÞ þ rvqqðpÞ ¼
Z

C
�rr�

qiqpi dC �
Z

C
�pp�qiqui dC � c

Z
C
�pp�qiq _uui dC þ bi

Z
C
B
�
qiq dC: ð35Þ

Using Eq. (2), Eq. (35) turns into

rqqðpÞ ¼
Z

C
�rr�

qiqpi dC �
Z

C
�pp�qiqui dC � c

Z
C
�pp�qiq _uui dC þ bi

Z
C
B
�
qiq dC; ð36Þ

where �rr�
qiq, �pp

�
qiq and B

�
qiq are defined in Appendix C.

In order to determine the elastic and viscous stresses, from Eq. (36), one should apply a special scheme
proposed by Mesquita et al. (2001). In this scheme Eq. (3) is written in the following form:

_rrelij ¼ Clm
ij _eevelm ¼ 1

c
cClm

ij _eevelm ¼ 1
c
rvij ) rvij ¼ c _rrelij : ð37Þ

Substituting the above relation into Eq. (2) one achieves the following time differential equation:

c _rreij þ reij � rij ¼ 0: ð38Þ

Eq. (38) is solved numerically by adopting linear approximation for the elastic stress. This numerical
procedure is shown in the next section.
When relaxation functions are adopted, one solves locally this equation by imposing constant stress over

a time-step. This procedure results in the following relation: reij ¼ rijð1� e�t=cÞ. This is done before writing
the global equilibrium equation. In the authors’ opinion, this procedure violates the continuity statement of
the viscous stress field, mainly in viscoplastic applications.
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3.1.3. Algebraic treatment
The kernels present in Eqs. (32) and (36) are the usual ones of ordinary static boundary element for-

mulations. The boundary C of the analysed domain is divided into various boundary elements Cc, over
which the variables are approximated, as follows:

pi ¼ /aP a
i ;

ui ¼ /aU a
i ;

_uui ¼ /a _UU a
i ;

ð39Þ

where /a are shape functions and a is the element node. The values P a
i , U

a
i and

_UU a
i are nodal variables.

Adopting these approximations the integral representation for displacement and stress are written as:

CkiUiðpÞ þ cCki
_UUiðpÞ ¼

Xnc
c¼1

Z
Cc

u�ki/
a dCcP a

i �
Xnc
c¼1

Z
Cc

p�ki/
a dCcU a

i � c
Xnc
c¼1

Z
Cc

p�ki/
a dCc

_UU a
i

þ bi
Xnc
c¼1

Z
Cc

B�
ki dCc; ð40Þ

rqqðpÞ ¼
Xnc
c¼1

Z
Cc

�rr�
qiq/

a dCcP a
i �

Xnc
c¼1

Z
Cc

�pp�qiq/
a dCcU a

i � c
Xnc
c¼1

Z
Cc

�pp�qiq/
a dCc

_UU a
i þ bi

Xnc
c¼1

Z
Cc

B
�
qiq dCc:

ð41Þ

After chosen the number of source points equal to the number of nodes and calculating all integrals, results

HUðtÞ þ cH _UUðtÞ ¼ GP ðtÞ þ BbðtÞ; ð42Þ

rðtÞ ¼ G0P ðtÞ � H 0UðtÞ � cH 0 _UUðtÞ þ B0bðtÞ; ð43Þ
where t represents time.
To solve the time differential matrix equation (42) it is necessary to approximate velocity in time. This is

done adopting linear behaviour along time, as follows:

_UUsþ1 ¼
Usþ1 � Us

Dt
: ð44Þ

Applying Eq. (44) into (42) the following linear time marching process is achieved:

HUsþ1 ¼ GPsþ1 þ Fs; ð45Þ
where

H ¼ 1
�

þ c
Dt

	
H ; ð46Þ

Fs ¼
c
Dt

HUs þ Bbsþ1: ð47Þ

As past values are known, it is necessary only to solve the system (45) for actual time, i.e., tsþ1, and go to
the next time-step. The boundary conditions along time are prescribed by interchanging columns of H and
G.
In order to calculate the total stress one applies Eqs. (44) and (43), written for the instant tsþ1, as follows:

rsþ1 ¼ G0Psþ1 � H 0Usþ1 � cH 0 _UUsþ1 þ B0bsþ1: ð48Þ
Assuming the same approximation for elastic stress as the one adopted for velocity, i.e.:
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_rresþ1 ¼
resþ1 � res

Dt
ð49Þ

and substituting Eq. (49) into (38) results

resþ1 ¼ rsþ1

�
þ c

Dt
res
	.

1
�

þ c
Dt

	
: ð50Þ

As res is known and rsþ1 is obtained by Eq. (48), the elastic stress holds from Eq. (50) and the viscous part
comes from Eq. (2).

3.2. Boltzmann model

In this section, the viscoelastic formulation developed previously for the Kelvin model is extended to
include the Boltzmann viscoelastic relation.
Applying the weighting residual technique over the differential equilibrium equation (18) the following

integral equation is achieved:Z
C
u�kipi dC �

Z
X

e�kijrij dX þ
Z

X
u�kibi dX ¼ 0: ð51Þ

This is the same equation used in the previous sections. Imposing on Eq. (51) the rheological relation
(17) one achieves:Z

C
u�kipi dC � EeEve

Ee þ Eve

Z
X

e�kijC
lm
ij elm dX � cEeEve

Ee þ Eve

Z
X

e�kijC
lm
ij _eelm dX þ cEve

Ee þ Eve

Z
X

e�kij _rrij dX

þ
Z

X
u�kibi dX ¼ 0: ð52Þ

Following the steps described in Appendix B one achieves the displacement integral equation for
Boltzmann model, as

CkiuiðpÞ ¼
Ee þ Eve

Eve

Z
C
u�kipi dC �

Z
C
p�kiui dC � c

Z
C
p�ki _uui dC � cCki _uuiðpÞ þ c

Z
C
u�ki _ppi dC

�
þ _bbi

Z
C
B�
ki dC

�

þ Ee þ Eve
Eve

bi

Z
C
B�
ki dC: ð53Þ

The stress integral representation for total stress following the Boltzmann viscoelastic model is given by

rqqðpÞ ¼
Z

C
�rr�

qiqpi dC � Eve
Ee þ Eve

Z
C
�pp�qiqui dC � cEve

Ee þ Eve

Z
C
�pp�qiq _uui dC

þ cEve
Ee þ Eve

Z
C
�rr�

qiq _ppi dC
�

þ _bbi

Z
C
B
�
qiq dC

�
þ bi

Z
C
B
�
qiq dC � cEve

Ee þ Eve
_rrqqðpÞ: ð54Þ

The functions �pp�qiq, �rr
�
qiq and B

�
qiq were defined previously for the Kelvin model. The elastic instantaneous

stress and the viscoelastic stress are equal to the total stress, given by Eq. (54), see Eqs. (13) and (15). It is
necessary to separate the viscous and elastic parts of the viscoelastic stress. This is done by Eq. (A.7) in its
time differential form, as:

_rrelij ¼ Clm
ij _eevelm ¼ 1

c
cClm

ij _eevelm ¼ 1
c
rvij ) rvij ¼ c _rrelij : ð55Þ
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Substituting Eq. (55) into Eq. (15) results following differential equation:

c _rrelij þ relij � rij ¼ 0: ð56Þ

This equation is similar to Eq. (38) written for the Kelvin model, but is understood now in the Boltz-
mann model sense. This equation is solved numerically by adopting a proper time approximation for the
elastic stress rate.

3.2.1. Algebraic treatment
The kernels to be integrated in Eqs. (53) and (54) are the same usually found in elastic boundary ele-

ments formulations. Adopting the same approximations used for the Kelvin model and including the
following approximation for surface force rate,

_ppi ¼ /a _PP a
i ð57Þ

one writes

CkiUiðpÞ ¼
Ee þ Eve

Eve

Xnc
c¼1

Z
Cc

u�ki/
a dCcP a

i �
Xnc
c¼1

Z
Cc

p�ki/
a dCcU a

i � c
Xnc
c¼1

Z
Cc

p�ki/
a dCc

_UU a
i � cCki

_UUiðpÞ

þ c
Xnc
c¼1

Z
Cc

u�ki/
a dCc

_PP a
i þ c

Xnc
c¼1

Z
Cc

B�
ki dCc

_bbi þ
Ee þ Eve

Eve

Xnc
c¼1

Z
Cc

B�
ki dCcbi; ð58Þ

rqqðpÞ ¼
Xnc
c¼1

Z
Cc

�rr�
qiq/

a dCcP a
i � Eve

Ee þ Eve

Xnc
c¼1

Z
Cc

�pp�qiq/
a dCcU a

i �
cEve

Ee þ Eve

Xnc
c¼1

Z
Cc

�pp�qiq/
a dCc

_UU a
i

þ cEve
Ee þ Eve

Xnc
c¼1

Z
Cc

�rr�
qiq/

a dCc _PP a
i þ cEve

Ee þ Eve

Xnc
c¼1

Z
Cc

B
�
qiq dCc

_bbi þ
Xnc
c¼1

Z
Cc

B
�
qiq dCcbi

� cEve
Ee þ Eve

_rrqqðpÞ: ð59Þ

After adopting the same number of source points as the nodal ones and performing all spatial integration
results:

HUðtÞ ¼ Ee þ Eve
Eve

GP ðtÞ � cH _UUðtÞ þ cG _PP ðtÞ þ cB _bbðtÞ þ Ee þ Eve
Eve

BbðtÞ; ð60Þ

rðtÞ ¼ G0P ðtÞ � Eve
Ee þ Eve

H 0UðtÞ � cEve
Ee þ Eve

H 0 _UUðtÞ þ cEve
Ee þ Eve

G0 _PP ðtÞ þ cEve
Ee þ Eve

B0 _bbðtÞ þ B0bðtÞ

� cEve
Ee þ Eve

_rrðtÞ; ð61Þ

where t represents time.
In order to solve the matrix time differential equation (60) the following time approximations are

adopted:
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_UUsþ1 ¼
Usþ1 � Us

Dt
;

_PPsþ1 ¼
Psþ1 � Ps

Dt
;

_bbsþ1 ¼
bsþ1 � bs

Dt
;

_rrsþ1 ¼
rsþ1 � rs

Dt
;

_rrelsþ1 ¼
relsþ1 � rels

Dt
:

ð62Þ

Introducing the first three approximations of Eq. (62) into Eq. (61), it turns into a time marching
process,

HUsþ1 ¼
c
Dt

�
þ Ee þ Eve

Eve

�
GPsþ1 þ Fs; ð63Þ

where

H ¼ 1
�

þ c
Dt

	
H ; ð64Þ

Fs ¼
c
Dt

HUs �
c
Dt

GPs þ B
c
Dt

��
þ Ee þ Eve

Eve

�
bsþ1 �

c
Dt

bs

�
: ð65Þ

The time-dependent boundary conditions are prescribed by interchanging columns of H and G. The
system (63) is solved for the present instant and the results turns into past for the next time-step.
Using the results Usþ1 and Psþ1, one is able to calculate _PPsþ1, _UUsþ1 and _bbsþ1 following expressions (62).

From these values, it is easy to calculate the total stress level at tsþ1 as follows:

rsþ1 ¼ G0Psþ1

�
� Eve
Ee þ Eve

H 0Usþ1 �
cEve

Ee þ Eve
H 0 _UUsþ1 þ

cEve
Ee þ Eve

G0 _PPsþ1 þ
cEve

Ee þ Eve
B0 _bbsþ1

þ B0bsþ1 þ
c
Dt

Eve
Ee þ Eve

rs

��
1

�
þ c

Dt
Eve

Ee þ Eve

�
: ð66Þ

The elastic stress at the viscoelastic part of the Boltzmann model _rrelsþ1 is achieved by imposing the ap-
proximation shown in Eq. (62) on the differential equation (56), as follows:

relsþ1 ¼ rsþ1

�
þ c

Dt
rels

	.
1

�
þ c

Dt

	
: ð67Þ

From expression (15) and the elastic part of the viscoelastic stress, Eq. (67), one achieves the viscous
stress rvij, completing the procedure.

4. Examples

4.1. Kelvin viscoelastic model

4.1.1. Simple stressed bar
This is a benchmark example, very often used to validate viscoelastic formulations. A simple bar is

subjected to a longitudinal distributed load, Fig. 3. The geometry, load and physical properties are also
shown in Fig. 3.
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The longitudinal displacement of point A is depicted in Fig. 4, and is compared with the analytical
answer (m ¼ 0). As it can be seen, the results are practically the same.
Fig. 5 shows the numerical elastic, viscous and total stresses, re11, rv11, r11, at point B. The results are

compared with the analytical ones. Again, the formulation behaviour is almost perfect.

4.1.2. Thick cylinder subjected to internal pressure
In this example the behaviour of a thick cylinder subjected to an internal pressure P is analysed. Due to

the double symmetry only a quarter of the structure is discretized, see Fig. 6. The geometry and physical
properties are depicted in Fig. 6.
The inner and outer wall radial displacements obtained applying this numerical formulation are com-

pared with the analytical ones in Figs. 7 and 8, respectively. The numerical results were obtained adopting
a time-step of one day.
As for the first example the numerical behaviour are almost the same as the analytical ones. Information

about stability, general loading and infinite domains applications are given in examples related to the
Boltzmann model.

Fig. 3. Geometry, discretization and physical properties.

Fig. 4. Longitudinal displacement of point A.
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4.2. Boltzmann model

4.2.1. Simple stressed bar
In order to verify the behaviour of the Boltzmann numerical formulation, a simple stressed bar is

analysed. The structure is modelled by adopting quadratic boundary elements, a quarter of the body is
discretized. The geometry, discretization and physical properties are given in Fig. 9.
The longitudinal displacement behaviour of point A is given in Fig. 10. It compares very well with the

analytical solution (m ¼ 0).
In Fig. 11 the stability of the method, regarding time-steps length, is shown. One can see that the results

are very stable. The time-step length varied from 1 to 5 days. The analysis has a total duration of 405 days.
Fig. 12 shows the stresses components rel11 (elastic at viscoelastic part), rv11 (viscous) and r11 (total) at

point B.
As for displacement, the stresses numerical behaviour is almost the same as the analytical one. It is

important to note that no superposition is used to run the Boltzmann model examples, the ‘‘jump’’, in
displacement at the first time-step is the numerical solution.

Fig. 5. Stresses at point B.

Fig. 6. Geometry, discretization and physical properties.
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Fig. 9. Geometry, discretization and physical properties.

Fig. 7. Inner wall radial displacement.

Fig. 8. Outer wall radial displacement.
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In Fig. 13 the displacement of point A is shown when the load is removed at day 200. The adopted time-
step is one day.

4.2.2. Tunnel subjected to internal pressure
A circular cavity is modelled by the proposed viscoelastic formulation. This example exhibits that using

the proposed formulation it is possible solving an exterior Boltzmann (or general) viscoelastic problem
using only a boundary discretization. A constant internal pressure P is applied over the interior surface of
the cavity. The cavity is modelled by adopting quadratic boundary elements, as depicted in Fig. 14. The
viscoelastic properties, discretization and geometry are shown in Fig. 14.

Fig. 10. Longitudinal displacement at point A.

Fig. 11. Time step dependence (stability).
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The tunnel radial displacement behaviour is shown in Fig. 15. The numerical result is compared with the
analytical one, considering plane stress assumptions.
Looking at Fig. 15, it is hard distinguishing the numerical and the analytical results, what makes clear

the accuracy of the proposed methodology.

5. Conclusions

It has been shown, along the paper, a new way to perform viscoelastic analysis by the BEM. It consists in
considering the viscous elastic relation as a non-local property of the continuum. From this assumption, the
time integration should be done after spatial approximation. Following a weighting residual procedure and
a proper kinematical relation between strain velocity and material velocities of neighbour points it is

Fig. 12. Elastic stress rel11, viscous rv11 and total r11 at point B.

Fig. 13. Displacement behaviour of point A, load removed at day 200.

2658 A.D. Mesquita, H.B. Coda / International Journal of Solids and Structures 39 (2002) 2643–2664



possible to write the boundary integral representation for displacement and velocity. The main advantage
of the presented technique is that the integral representation posses only boundary values. It has been
imposed a spatial approximation for boundary values achieving a system of time differential equations.
This system is easily solved by adopting linear time approximation for velocity and boundary traction rates.
A very elegant treatment is given for the stress determination. No domain approximations were assumed

and only integral equations were applied. Linear time approximation was adopted for stress rates. The
proposed formulation has been developed and implemented for both Kelvin and Boltzmann viscoelastic
models, showing that any desired viscous model could be added to the formulation following similar steps.
Four examples are shown in order to demonstrate the accuracy, stability and generality of the technique.

Appendix A. Boltzmann viscoelastic differential relation

In this appendix some necessary steps to achieve expressions (16) and (17) from Eqs. (13) to (15) are
presented. It is important to show how to manage constitutive relations to achieve expressions that are
more general.

Fig. 14. Geometry, discretization and physical properties.

Fig. 15. Inner wall radial displacement.
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The elastic (instantaneous) part of the Boltzmann viscoelastic model is governed by the Hooke’s Law,
i.e.:

reij ¼ Clm
ij eelm ¼ Ee eCClm

ij eelm; ðA:1Þ

where Clm
ij is the usual elastic constitutive tensor, given by

Clm
ij ¼ kdijdlm þ lðdildjm þ dimdjlÞ ðA:2Þ

in which k and l are Lam�ee constants, given in terms of Poisson’s ratio and Young’s modulus as:

k ¼ Ee
m

ð1þ mÞð1� 2mÞ ¼ Ee ~kk; ðA:3Þ

l ¼ Ee
1

2ð1þ mÞ ¼ Ee~ll; ðA:4Þ

eCClm
ij ¼ ~kkdijdlm þ ~llðdildjm þ dimdjlÞ ¼ Clm

ij =Ee; ðA:5Þ

where, for convenience, we defined new dimensionless values ~kk, ~ll and eCClm
ij .

Using the same idea, one writes the elastic part of the Kelvin viscoelastic stress as follows:

relij ¼ Clm
ij evelm ¼ Eve eCClm

ij evelm: ðA:6Þ

The viscous stress is written in a general form as:

rvij ¼ glm
ij _ee

ve
lm ¼ Eve~gglm

ij _ee
ve
lm ¼ EveceCClm

ij _eevelm: ðA:7Þ

The viscous stress/strain rate relation is given by the tensor glm
ij , written as:

~gglm
ij ¼ hk

~kkdijdlm þ hl~llðdildjm þ dimdjlÞ ¼ glm
ij =Eve; ðA:8Þ

where, as for the Kelvin model, hk ¼ hl are the viscous parameters.
The inverse representation of Eq. (A.5) is

eDDlm
ij ¼ ðeCClm

ij Þ
�1 ¼ 1

2

1

2
ðdildjm

�
þ dimdjlÞ �

1

1þ m
dijdlm

�
: ðA:9Þ

Applying Eq. (A.9) in Eqs. (A.1) and (A.6) and taking into account Eq. (13) one writes:

eelm ¼ 1

Ee
eDDij

lmrij; ðA:10Þ

evelm ¼ 1

Eve
eDDij

lmrelij : ðA:11Þ

Form Eq. (15) one transforms Eq. (A.11) into

evelm ¼ 1

Eve
eDDij

lmðrveij � rvijÞ ¼
1

Eve
eDDij

lmðrij � rvijÞ: ðA:12Þ

Assuming relation (A.7) one writes Eq. (A.12) as follows:

evelm ¼ 1

Eve
eDDij

lmrij � eDDij
lmeggck

ij _ee
ve
ck : ðA:13Þ

Substituting expressions (14) and (A.10) into Eq. (A.13) and rearranging terms, results:
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elm ¼ eDDij
lm

1

Eve

�
þ 1

Ee

�
rij � eDDij

lm~gg
ck
ij _ee
ve
ck : ðA:14Þ

Multiplying Eq. (A.14) by Clm
qs , given in Eq. (A.5), results:

Eve þ Ee
EveEe

� �
rqs ¼ eCC ck

qs eck þ ~ggck
qs _ee
ve
ck : ðA:15Þ

Differentiating Eq. (14) with respect to time, one writes:

_eeveck ¼ _eeck � _eeeck: ðA:16Þ

Substituting relation (A.16) into expression (A.15) and rearranging indices, results:

Eve þ Ee
EveEe

� �
rqs ¼ eCC ck

qs eck þ ~ggck
qs _eeck � ~ggck

qs _ee
e
ck: ðA:17Þ

Differentiating, with respect to time, Eq. (A.10) and substituting into Eq. (A.17) one achieves:

rqs ¼
EveEe

Eve þ Ee

� �eCC ck
qs eck þ

EeEve
Eve þ Ee

� �
~ggck
qs _eeck �

Eve
EveEe

� �
~ggij
qs
eDDck

ij _rrck: ðA:18Þ

In order to write an integral statement with only boundary values it is necessary to impose the sim-
plification hk ¼ hl ¼ c. In this way expression (A.18) turns into:

rij ¼
EveEe

Eve þ Ee

� �eCClm
ij elm þ cEveEe

Eve þ Ee

� �eCClm
ij _eelm � cEve

EveEe

� �
_rrij: ðA:19Þ

This is the general rheological differential relation for the Boltzmann model. It is employed to derive the
boundary element procedure proposed here. More complicate rheological models can be introduced in the
following similar procedures as the employed to achieve Eq. (A.19).

Appendix B. Steps used to find Boltzmann integral representation

The following steps are important to indicate the way one can follow to write more complete viscoelastic
Boundary Element formulations.

B.1. Displacement integral representation

Using the following relations inside Eq. (52),

e�kijEeC
lm
ij elm ¼ r�

klmelm ¼ r�
klmul;m ¼ r�

kijui;j; ðB:1Þ

e�kijEeC
lm
ij _eelm ¼ r�

klm _eelm ¼ r�
klm _uul;m ¼ r�

kij _uui;j; ðB:2Þ

e�kij _rrij ¼ u�ki;j _rrij ðB:3Þ

results:Z
C
u�kipi dC � Eve

Ee þ Eve

Z
X

r�
kijui;j dX � cEve

Ee þ Eve

Z
X

r�
kij _uui;j dX þ cEve

Ee þ Eve

Z
X
u�ki;j _rrij dX þ

Z
X
u�kibi dX ¼ 0:

ðB:4Þ
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Integrating by parts the second, third and fourth integrals of Eq. (B.4) one finds:Z
C
u�kipi dC � Eve

Ee þ Eve

Z
C

r�
kijnjui dC

�
�
Z

X
r�
kij;jui dX

�
� cEve
Ee þ Eve

Z
C

r�
kijnj _uui dC

�
�
Z

X
r�
kij;j _uui dX

�

þ cEve
Ee þ Eve

Z
C
u�ki _rrijnj dC

�
�
Z

X
u�ki _rrij;j dX

�
þ
Z

X
u�kibi dX ¼ 0: ðB:5Þ

The equilibrium equation of the analysed problem can be written as:

_rrij;j ¼ � _bbi: ðB:6Þ

Using Eqs. (27) and (B.6), one writes Eq. (B.5) in the following form:

CkiuiðpÞ ¼
Ee þ Eve

Eve

Z
C
u�kipi dC �

Z
C
p�kiui dC � c

Z
C
p�ki _uui dC � cCki _uuiðpÞ

þ c
Z

C
u�ki _ppi dC

�
þ
Z

X
u�ki _bbi dX

�
þ Ee þ Eve

Eve

Z
X
u�kibi dX: ðB:7Þ

The term Cki is the same present in Eq. (28) for the Kelvin–Voigt model. Eq. (B.7) is the integral equation
for displacements adopting the Boltzmann model. The last integral can be transformed to the boundary,
resulting:

CkiuiðpÞ ¼
Ee þ Eve

Eve

Z
C
u�kipi dC �

Z
C
p�kiui dC � c

Z
C
p�ki _uui dC � cCki _uuiðpÞ þ c

Z
C
u�ki _ppi dC

�
þ _bbi

Z
C
B�
ki dC

�

þ Ee þ Eve
Eve

bi

Z
C
B�
ki dC: ðB:8Þ

B.2. Stress representation for internal points

For internal points the displacement integral representation is given by:

ukðpÞ ¼
Ee þ Eve

Eve

Z
C
u�kipi dC �

Z
C
p�kiui dC � c

Z
C
p�ki _uui dC � c _uukðpÞ þ c

Z
C
u�ki _ppi dC

�
þ _bbi

Z
C
B�
ki dC

�

þ Ee þ Eve
Eve

bi

Z
C
B�
ki dC: ðB:9Þ

Applying the kinematical relation (33) over Eq. (B.9) results:

ekeðpÞ ¼
Ee þ Eve

Eve

Z
C

e�kiepi dC �
Z

C
p̂p�kieui dC � c

Z
C
p̂p�kie _uui dC � c _eekeðpÞ þ c

Z
C

e�kie _ppi dC
�

þ _bbi

Z
C
B̂B�
kie dC

�

þ Ee þ Eve
Eve

bi

Z
C
B̂B�
kie dC: ðB:10Þ

Remembering that the derivatives have been made with respect to the source point position, the values p̂p�kie,
e�kie and B̂B

�
kie are given in Appendix C. The total stress is obtained by applying the constitutive relation (A.19)

on the total strain, Eq. (B.10), resulting:

rqqðpÞ ¼
Z

C
�rr�

qiqpi dC � Eve
Ee þ Eve

Z
C
�pp�qiqui dC � cEve

Ee þ Eve

Z
C
�pp�qiq _uui dC � cEeEve

Ee þ Eve
Cke

qq _eekeðpÞ

þ cEve
Ee þ Eve

Z
C
�rr�

qiq _ppi dC
�

þ _bbi

Z
C
B
�
qiq dC

�
þ bi

Z
C
B
�
qiq dC þ cEeEve

Ee þ Eve
Cke

qq _eekeðpÞ �
cEve

Ee þ Eve
_rrqqðpÞ:

ðB:11Þ
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The forth and eighth terms at the right-hand side of Eq. (B.11) cancel each other, resulting:

rqqðpÞ ¼
Z

C
�rr�

qiqpi dC � Eve
Ee þ Eve

Z
C
�pp�qiqui dC � cEve

Ee þ Eve

Z
C
�pp�qiq _uui dC

þ cEve
Ee þ Eve

Z
C
�rr�

qiq _ppi dC
�

þ _bbi

Z
C
B
�
qiq dC

�
þ bi

Z
C
B
�
qiq dC � cEve

Ee þ Eve
_rrqqðpÞ: ðB:12Þ

Eq. (B.12) is the integral representation for total stress following the Boltzmann viscoelastic model. The
functions �pp�qiq, �rr

�
qiq and B

�
qiq are given in Appendix C.

Appendix C. Some auxiliary values

The functions inside the kernels developed in this work are given by:

p̂p�kie ¼
1

4pð1� mÞr2 2m dkir;eðf
�

þ deir;k Þ þ 2dekr;i � 8r;k r;i r;e g
or
on

þ 1ð � 2mÞ dkineð þ dienk � dkeni

þ 2r;k r;e niÞ þ 2m r;i r;e nkð þ r;i r;k neÞ
�
;

e�kie ¼
�1

8pð1� mÞGr 1ðf � 2mÞ dkir;eð þ dker;i Þ � dier;k þ 2r;k r;i r;e g; ðC:1Þ

B̂B�
kie ¼ e�kie

or
on

;

�pp�qiq ¼
2G

4pð1� mÞr2 2
or
on

1ð
��

� 2mÞdqqr;i þ m dqir;q



þ dqir;q
�
� 4r;q r;i r;q

�
þ 2m nqr;q r;i



þ nqr;q r;i

�
þ 1ð � 2mÞ 2nir;q r;q



þ nqdqi þ nqdqi

�
� 1ð � 4mÞnidqq

�
; ðC:2Þ

�rr�
qiq ¼

1

4pð1� mÞr 1ð
�

� 2mÞ dqqr;i



þ diqr;q � dqir;q
�
þ 2r;q r;i r;q

�
; ðC:3Þ

B
�
qiq ¼ �rr�

qiq

or
on

: ðC:4Þ
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