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Abstract

From basic assumptions of viscoelastic constitutive relations and weight residual techniques a Boundary Element
procedure is achieved for both Kelvin and Boltzmann models. Imposing spatial approximations and adopting con-
venient kinematical relations for strain velocities, a system of time differential equations is achieved. This system is
solved adopting linear approximations for displacements, resulting in a time marching methodology. This approach
avoids the use of relaxation functions and makes easier changes in boundary conditions along time, natural or essential.
An important feature of the resulting technique is the absence of domain discretizations, which simplify the treatment of
problems involving infinite domains (tunnels and cavities inside the soil). Some examples are shown in order to
demonstrate the accuracy and stability of the technique when compared to analytical solutions. © 2002 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

In some recent works (see e.g. Mesquita et al. (2001) and Mesquita and Coda (2002, 2001)) the authors
developed a new time marching process for both Finite Element Method (FEM) and Boundary Element
Method (BEM) to solve viscoelastic problems. These formulations are based on the differential constitutive
relation for Kelvin and Boltzmann viscoelastic models. They produce time differential systems of equations,
solved by an appropriate time marching process. The resulting algorithms are able to solve static visco-
elastic problems with any load time dependence and boundary conditions. However, at that time, the BEM
formulation was not completely developed, i.e., it was necessary to perform domain integrals (using internal
cells) in order to consider the viscous effects.

* Corresponding author. Tel./fax: +55-16-2739482.
E-mail addresses: mesquita@sc.usp.br (A.D. Mesquita), hbcoda@sc.usp.br (H.B. Coda).

0020-7683/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(02)00148-8



2644 A.D. Mesquita, H.B. Coda | International Journal of Solids and Structures 39 (2002) 2643-2664

The novelty and main objective of this paper is avoiding internal cells, resulting in a viscoelastic
Boundary Element formulation performing discretizations only at the boundary of the analysed body. This
improvement is very important because it reduces the amount of variables to be computed. It makes easy
the treatment of infinite and semi-infinite viscoelastic bodies under loading or material extraction.

Another feature of the developed formulation is that, for Boltzmann model, the total time-depen-
dent displacements and stresses are achieved directly from the time marching process, not by summation
of the instantaneous and viscous uncoupled parts (see e.g. Munaiar Neto (1998) and Fairbaim et al.
(1995)).

The formulation proposed here is quite different from the ones usually found in the literature. The most
of the works developed so far as follows, basically, three main procedures. All of them are based on re-
laxation functions, providing a time-dependent constitutive relation (see e.g. Lemaitre and Chaboche
(1990), Flugge (1967), Sobotka (1984) and Christensen (1982)).

The first procedure is based on the use of relaxation functions together with a convenient incremental
scheme, where the convolutional aspect of the viscous behaviour is transformed into discrete contributions
properly added to the elastic response (see e.g. Carpenter (1972), Chen et al. (1993), Chen and Lin (1982),
Argyris et al. (1979), Sensale et al. (2001), Liu et al. (2000) and Liu (1994)). The second available formu-
lation follows the same scheme applied to viscoplastic analysis (see e.g. Munaiar Neto (1998), Fairbaim
et al. (1995), Perzyna (1963), Owen and Damjanic (1982) and Argyris et al. (1991)), in which the viscous
characteristics are incorporated to the effective stress—strain relation by means of relaxation functions,
leading to incremental techniques.

The third one provides a Laplace-Carson transformation of the viscoelastic problem to an equiva-
lent elastic one. After solving the transformed problem, a numerical inversion is performed recovering the
desired time domain behaviour (see e.g. Lemaitre and Chaboche (1990)).

Regarding the mentioned procedures, some brief remarks can be made. The last technique is appropriate
to solve problems in which the nature of boundary conditions does not change along time. The first and
second procedures are based on quasi-static incremental schemes where the time behaviour of the solution
is recovered by stress decay, therefore, imposing external loads with arbitrary time dependence presents
some difficulties.

The main difference of the proposed scheme and the ones available in literature is the time solution. The
use of incremental methods based on relaxation functions assumes a known behaviour (usually constant) of
the total stress during a load increment. From this assumption, one solves locally the time differential stress/
strain relation achieving the viscous contribution to the body behaviour. This contribution is applied on the
equilibrium equation as a correction term. The proposed formulation assumes a kinematical relation for
strain velocity, i.e., relates strain velocity to material velocity. From this relation a global time differential
system of equation is achieved and properly solved.

At the end of this paper, an example section is provided. Various examples are shown in order to
demonstrate the accuracy and stability of the formulation. Analytical solutions are taken for comparison
because they are the natural accuracy reference parameter. It is not possible, from the consulted literature,
to compare the performance of this technique with others, because no data about time processing or
stability are given in references (see e.g. Sensale et al. (2001), Liu et al. (2000) and Liu (1994)).

Along all text Einstein notation is adopted.

2. Basic relations for viscoelasticity

This section is divided into two main parts, one related to the Kelvin model and the other related to the
Boltzmann standard relations.
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2.1. Kelvin model

Using rheological models defined in the uniaxial space is the usual way adopted to describe the visco-
elastic behaviour of solids. A simple representation, very often adopted to describe this kind of behaviour,
is the Kelvin—Voigt viscoelastic, Fig. 1. The understanding of this simple model is a basic step to the de-
velopment of more complicated ones, as for example the Boltzmann model described in the next item.

From Fig. 1, the following relations are stated:

=y = W

oy = afj + a;}, (2)
where ¢ and o are the strain and stress tensors; the Cartesian co-ordinates are represented by subscripts
i and j, while the superscript v and e represent viscous and elastic parts, respectively.

The elastic stress can be written in terms of strain components, as follows:

e _ Im_e __ Im
o, = Cl.j &y = Cl.j Elm- (3)
Similarly, the following relation gives the viscous stress components:
v _ dmxv  __ Im
Oij = Mij &y = Nij Eim- 4)

In Egs. (3) and (4), Cl.’jm and nf]'.” contain the elastic compliance factors and the viscous constitutive pa-
rameters, respectively, defined as follows:

C,-l;n = )~5ij51m + ,u(éiléjm + 5im(3jl), (5)

77,1;" = 0,400 + 0,1(0i10 jm + 0imd;1), (6)

where 4 and u are Lame’s constants, given by:

vE
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E
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in which £ and v are Young’s modulus and Poisson ratio, respectively, while 0, and 0, are the hydrostatic
and deviatoric viscosity coefficients.
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Fig. 1. Kelvin—Voigt viscoelastic model (uniaxial representation).
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Replacing Egs. (3) and (4) into Eq. (2) gives
O-ij = Cil;"elm —+ ﬂl[jmﬁlm (93.)

In this work, a further simplification is assumed, i.e., 0, = 0, =y, in order to obtain only boundary
values at the integral equations, see Section 3.

gjj = Cl-l;nlilm + Vclljmﬁlm (9b)

Viscous effects should be incorporated into the global equilibrium equation of the body taking into
account the non-local characteristics of the stresses. Moreover, the viscous characteristics of the body must
satisfy boundary conditions together with the elastic ones.

In order to fulfil these requirements one can write properly the actual equilibrium equation for an in-
finitesimal part of a general viscoelastic body, as follows:

0y +bj = pit; + cu (10)
or

o, +al, + b, = pit; + ciyj, (11)

i iji

where b; is the body force acting in j direction.

Note that Eq. (11) exhibits explicitly the viscous stress term which plays an important role in the body
equilibrium. As in this work the dynamic effects, inertia forces and friction, will not be considered, ex-
pression (11) should be rewritten as:

65, +a.. +b=0. (12)

iji T Oiji

2.2. Boltzmann model

Another representation employed to describe the mechanical behaviour of viscoelastic materials, stress/
strain constitutive relation, is the so-called standard Boltzmann model. This model is more general than the
previous one, and can be described in a uniaxial representation as illustrated in Fig. 2.

This model is represented by a serial arrangement of a Kelvin—Voigt model and an elastic relation. It can
reproduce both the instantaneous and the viscous behaviour of a specific material.
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Fig. 2. Boltzmann viscoelastic model (uniaxial representation).



A.D. Mesquita, H.B. Coda | International Journal of Solids and Structures 39 (2002) 2643-2664 2647

It is easy to observe, see Fig. 2, that the stress level for each part of the model, elastic and viscoelastic,
is the same,
oy =05, = o, (13)
where gy, a5 and o) are, respectively, total, elastic and viscoelastic stress parts. The total strain can be
decomposed into its elastic and viscoelastic parts, i.e.:

i = £, 615 (14)

From Fig. 2, one may observe that the viscoelastic stress is the summation of a viscous and an elastic

part, as follows:
Vi 1 v
o =0y + 0 (15)

where o}, is the viscous part and (rf} is the elastic part of the stress developed in the Kelvin—Voigt fragment
of the Boltzmann model.

From the previous equations, one is able to define the differential constitutive relation necessary to build
the desired boundary integral equations, as described in Appendix A:

EveEe Ak EeEve ~vk - Eve ~ii Nk -
Op=|=——= |Clep+ | =—— |1éx — Y D6, 16
” (E B )T\ Bt B )T T B )T 16)
where (i’i’;”, ﬁq’; and l~),jk are the dimensionless constitutive tensor, the dimensionless viscoelastic compliance
tensor and the inverse of the dimensionless constitutive tensor, respectively (see Appendix A).

In order to write an integral statement with only boundary values it is necessary to impose the sim-
plification 0, = 0, = 7. In this way expression (16) turns into:

EveEe 1 VEveEe ~im -, VEve .
o= (e N gmg, oy ( P2vele N Eimg ( T2ve o 17
i) <Eve+Ee)Cl] g +<Eve+Ee)CU g E.L. i) (17)

This is the general rheological differential relation for the Boltzmann model. More complicate rhe-
ological models can be introduced following similar procedures, as the one employed in Appendix A, to
achieve Eq. (17).

3. Integral equations

The BEM is based on boundary integral equations. In Section 3.1, it will be developed the integral
statement for Kelvin model, due to its simplicity. After that, the procedure is extended to the Boltzmann
model.

3.1. Kelvin model

3.1.1. Displacement representation
The viscoelastic integral equation for boundary or internal points is obtained here using the weighting
residual technique on the differential equilibrium equation (12) written in the following form:

The error present in Eq. (18), when an approximate solution is adopted, can be weighted by a proper

function. In this work, the Kelvin fundamental solution for elastic infinite body is adopted. Eq. (18) is
weighted over the analysed domain €, as follows:
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/ i (0, + by)dQ = 0, (19)
Q

where u}; is the Kelvin fundamental solution. It represents the effect of a unit concentrate load applied at
a point located in an infinite domain. Applying the divergence theorem on the first term of Eq. (19), one
achieves:

/uzia,-jnjdf—/u,fw.al-de—&—/u,fib,-dQ:O, (20)
r Q Q

where I' is the boundary of the analysed body and #; is the outward normal vector component. Knowing
that, o;n; = p; and that u}, 6, = €,,0;, where g is the strain fundamental term, Eq. (20) turns into

/Ll;;pldr—/8,;/0'”(19—‘-/14;;[?1(1!2:0 (21)
r Q Q

This equation is the starting point to obtain the viscoelastic integral representations. Imposing the visco-
elastic relations, Eq. (9b), on Eq. (21), results

/u,’;pidf—/a,*d/.CU’,”g,mdQ—/a,fiini’;”é;mdQ+/u,ﬁibidQ:O. (22)
r Q Q ’ Q
Knowing that

* Im % % %
&3;Ci €im = Opgpim = Ol = Ol (23)

* Img, * a0 * - — et
& VCi € = V01 Eim = VO thim = VO thi - (24)

Eq. (22) turns into

/u,*apldF—/azlju,,dQ—y/azlju,,dQ—&—/u,’;b,dQ=0 (25)
r Q Q Q

Integrating by parts, the second and third terms of Eq. (25) one achieves

/u,*dpidl“—/O',tl./.n,«u,-df—l—/azij].u,«dQ—y/a,’;i].n/it,»df—i—y/a,ti”uid!)—i—/u,*a.bidQ:O (26)
r r o r e Q
Eq. (26) can be rewritten by using the fundamental equilibrium equation, i.c.,

O—sz/j = —5(p )0, (27)

where 6(p, s) is Dirac’s Delta distribution, s is a field point and p is the source location. Applying Eq. (27)
into Eq. (26), taking into consideration Dirac’s Delta properties and that a};.n; = pj;, results

Cuti(p) + 7Cuitti(p) = / uypidl’ — / Pl =y / Pyt AT + / uyb; dQ. (28)
r r r Q

The term Cj; is the same obtained in the elastostatic formulations and can be found in standard Boundary
Element references (see e.g. Brebbia et al. (1984) and Brebbia and Dominguez (1992)). Eq. (28) is the al-
ternative viscoelastic integral representation for the Kelvin—Voigt model. The body force domain integral
can be easily transformed to its boundary representation, resulting an expression written exclusively for
boundary values (see e.g. Coda and Venturini (1998)). If the body force b; is constant, the explicit integral
expression is

1
/u;ibidQ:bi/uZidQ:bi/ /uzirdrdﬂzbi/ /u,’;rdr—gdfzbi/B,’;dF. (29)
Q Q 0 Jr rJr r on r
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For Kelvin fundamental solution, B}, is given by

* r 1 @V
Bki—m[(4\1—3)<lnr—§)5k,-+r,kr,f]a. (30)
Rewriting Eq. (28) results
r r r r

3.1.2. Stress integral representation for internal points
To write the stress integral representation for internal points one starts by achieving the strain integral
representation. At internal points the displacement integral representation is given by

u(p) + vy (p) :/u,*a.p,-dF—/pzl.u,-df—y/p,tiit,-df—i—b,-/BZldF. (32)
r r r r
The kinematical relation for small strains, is adopted:

Ere = 3tk + Uey)- (33)

Applying the above definition on Eq. (32) and considering that the derivatives are done with respect to the
source point location, one finds

b1e(p) + Virelp) = / opdl / proudl — / proiudl +b, / By, dr. (34)
I r I r

The terms p;,, ¢, and B, are defined in Appendix C. The total stress is obtained using the constitutive
relation (9b) over Eq. (34), resulting

O_f)q )+O_;/)q(p) :/Fa';lqp,df—/rﬁ;lqu,dr—y/rﬁ;lqu,df—i-b,/rﬁzlqdf (35)
Using Eq. (2), Eq. (35) turns into
O'pq(p) :/6';lqp,df—/ﬁ;lqu[df—V/I_J;lqu,df—kb,/g;qdf, (36)
r r r r

where &%, p;,, and B, are defined in Appendix C.
In order to determine the elastic and viscous stresses, from Eq. (36), one should apply a special scheme
proposed by Mesquita et al. (2001). In this scheme Eq. (3) is written in the following form:

= o) = w;}. (37)

1 1
- el Im jve oy (lmave Y
o; =C'¢, = . G = . o

Substituting the above relation into Eq. (2) one achieves the following time differential equation:
Y6y + 05, — 0, = 0. (38)

Eq. (38) is solved numerically by adopting linear approximation for the elastic stress. This numerical
procedure is shown in the next section.

When relaxation functions are adopted, one solves locally this equation by imposing constant stress over
a time-step. This procedure results in the following relation: o, = a;;(1 — e~/7). This is done before writing
the global equilibrium equation. In the authors’ opinion, this procedure violates the continuity statement of
the viscous stress field, mainly in viscoplastic applications.
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3.1.3. Algebraic treatment

The kernels present in Eqgs. (32) and (36) are the usual ones of ordinary static boundary element for-
mulations. The boundary I' of the analysed domain is divided into various boundary elements I'., over
which the variables are approximated, as follows:

Di = ¢O(P;xa
uj = ¢"UY, (39)
i{i = (]51(']1_1’

where ¢* are shape functions and o is the element node. The values P*, U* and U? are nodal variables.
Adopting these approximations the integral representation for displacement and stress are written as:

ne

Culip) +1Clp) =Y [ wgarer = [ pgrarvz =y [ parard;
c=1 Ie c=1 Ie c=1 Ie

+b) / B dr., (40)
c=1 Te

ne

apq(p):Z/F "Ziq¢>“drc1’,-“—2/FPZqudchf—yZ/Fp;,-qqﬁ“dfcw+bf2/rqudFC'

(41)

After chosen the number of source points equal to the number of nodes and calculating all integrals, results
HU(t) + yHU(t) = GP(t) + Bb(t), (42)

o(t) = G'P(t) — H'U(t) — yH'U(t) + B'b(1), (43)

where ¢ represents time.
To solve the time differential matrix equation (42) it is necessary to approximate velocity in time. This is
done adopting linear behaviour along time, as follows:

: Us+1 - Us

Uyy=———. 44
= (44)

Applying Eq. (44) into (42) the following linear time marching process is achieved:
HUHI =GPy + £, (45)
where

T— s

H=(1+4)H, (46)

F, = - HU, + Bb... (47)

As past values are known, it is necessary only to solve the system (45) for actual time, i.e., £, |, and go to
the next time-step. The boundary conditions along time are prescribed by interchanging columns of A and
G.

In order to calculate the total stress one applies Eqs. (44) and (43), written for the instant ¢, as follows:

01 = G Py — H'Upsy — pH'Ugyy + Bbysy. (48)

Assuming the same approximation for elastic stress as the one adopted for velocity, i.e.:
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-e GS B 6:
g =0 (49)

and substituting Eq. (49) into (38) results

= (o ) (145 0

As ¢¢ is known and o, is obtained by Eq. (48), the elastic stress holds from Eq. (50) and the viscous part
comes from Eq. (2).

3.2. Boltzmann model

In this section, the viscoelastic formulation developed previously for the Kelvin model is extended to
include the Boltzmann viscoelastic relation.

Applying the weighting residual technique over the differential equilibrium equation (18) the following
integral equation is achieved:

/ ul,pidl — / 6,0, dQ + / ulb;dQ = 0. (1)
r Q Q

This is the same equation used in the previous sections. Imposing on Eq. (51) the rheological relation
(17) one achieves:

* EeEve Im yEeEVe Im VE -
/l"uk[pidF_Ee+Eve /SkUC ‘glmdQ Ee+Eve/ klezj SlmdQ+E +Eve glcijo-i/dQ

+ / ub;dQ = 0. (52)
Q

Following the steps described in Appendix B one achieves the displacement integral equation for
Boltzmann model, as

- Ee + Eve * % - ; "
Cuui(p) = i / uppdl — /Pk,” dr — /p,au,df—ycklu,(p) +y[/rukip,-d1“+b,-/eridF]

| EetEx
L2, / B.dr. (53)

The stress integral representation for total stress following the Boltzmann viscoelastic model is given by

—x Eve —x yEve —x .
o) = /r %l — g /1"p il = g /rp pigts A1
VEve _y . ; —5* —* VEve .
*pdl+b; | B.dIl'| +b; | B, dI — ——— . 54
+ Ee+ Ey. [ /r OpigPi AL+ /r pig } + /r pig E.+ Eve Gpg(P) (54)

The functions p;, , 7, and B »ig Were defined previously for the Kelvin model. The elastic instantaneous
stress and the viscoelastic stress are equal to the total stress, given by Eq. (54), see Egs. (13) and (15). It is
necessary to separate the viscous and elastic parts of the viscoelastic stress. This is done by Eq. (A.7) in its
time differential form, as:

m 1 m 1 - el
Cl & = ;nyj & = ;afj = o}, =6} (55)
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Substituting Eq. (55) into Eq. (15) results following differential equation:
el 1
y6y; + o5 —0;=0. (56)
This equation is similar to Eq. (38) written for the Kelvin model, but is understood now in the Boltz-

mann model sense. This equation is solved numerically by adopting a proper time approximation for the
elastic stress rate.

3.2.1. Algebraic treatment

The kernels to be integrated in Egs. (53) and (54) are the same usually found in elastic boundary ele-
ments formulations. Adopting the same approximations used for the Kelvin model and including the
following approximation for surface force rate,

p=¢'P (57)
one writes
— Ee + Eve & * o o m - % g0 Frol il i
Culi(p) == 7= | uy¢"dlF? — | AT~y > | pud*drU; = yCuli(p)
ve c=1 I. c=1 I

e ) o e . . B+ By & i
+yZ/ ul,p*dr P +yZ/ Bk,.dFCbi—s—TZ/ B, dI.b;, (58)
c=1 Ie c=1 Ie ve c=1 I'e

—x o EVe S —% o o VEVE . o
0e(p) = / G, " dr P — LB ; /F P, 0" dI.U, “ETE ; / P ¢ Al U

S e e S kS [ g

yE
E + E. /)q (p) (59)

After adopting the same number of source points as the nodal ones and performing all spatial integration
results:

Ee Eve 4 r I Ee Eve
HU(t) = % GP(t) — yHU(t) + yGP(t) + yBb(1) + ;—Bb(t), (60)
VE yEVe r ’VEve 7
H=GP(t)—-—=_HU@lt) - ——"—"" HU@W) +—""S-GP@t) + ——"Z—B'b(r) + B'b(¢
a(t) (t) - o p VO - g U0+ PO+ (t) + B'b(1)
yEve .
— (s 61
Er .0 (61)

where ¢ represents time.
In order to solve the matrix time differential equation (60) the following time approximations are
adopted:
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: Ui — U,
Ug = thb»
. P, —P
P = STtb»
b1 — b,
bs+1 = #a (62)
. o Os41 — Oy
Os+1 = T7
| |
ol O — O
=T

Introducing the first three approximations of Eq. (62) into Eq. (61), it turns into a time marching
process,

TT _ l Ee +EVB

HU&‘+1 - (Al+ Eve )GPY+1 +R‘7 (63)
where

7 N

H= (1 +At)H, (64)

Y L y | Ee+ Ey Y
F="HU —1GP,+B|[ —+=" )b, ——b,|.
=AY g O T KA1+ E )b”l Atbb] (65)

The time-dependent boundary conditions are prescribed by interchanging columns of A and G. The
system (63) is solved for the present instant and the results turns into past for the next time-step.

Using the results U,,; and P,., one is able to calculate P, U,,; and I}S+1 following expressions (62).
From these values, it is easy to calculate the total stress level at #.,; as follows:

oon = (G — B gy~ B iy B _gp oy B gy
s+1 s+1 Ee +Eve s+1 Ee +Eve s+1 Ee +E\/e s+1 Ee +Eve s+1
y EVe ’y EVe
Bhy 4+ — 2 4 |4 B ) 66
+ '*1+AtEe+Eve"')/< +AtEe+Eve> (66)

The elastic stress at the viscoelastic part of the Boltzmann model ¢, is achieved by imposing the ap-
proximation shown in Eq. (62) on the differential equation (56), as follows:

= (o ot) /(14 5)- (67)

From expression (15) and the elastic part of the viscoelastic stress, Eq. (67), one achieves the viscous
stress oy;, completing the procedure.

g

4. Examples
4.1. Kelvin viscoelastic model

4.1.1. Simple stressed bar

This is a benchmark example, very often used to validate viscoelastic formulations. A simple bar is
subjected to a longitudinal distributed load, Fig. 3. The geometry, load and physical properties are also
shown in Fig. 3.
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y
Physical properties Geometry
o E=11kN/mm? L=800mm
[ — v=(0.0 h=100mm
P 3. g » Y=45.454545days
'\ Y, Time parameters  Loading
I X At=1.0day P=5 N/mm?
| -

Fig. 3. Geometry, discretization and physical properties.

Analytic

Displacement(mm)
o
N
|

X  BEM
0.1 —
0.0 \ \ \ \ \
0 100 200 300 400 500
Time(days)

Fig. 4. Longitudinal displacement of point A.

The longitudinal displacement of point A is depicted in Fig. 4, and is compared with the analytical
answer (v = 0). As it can be seen, the results are practically the same.

Fig. 5 shows the numerical elastic, viscous and total stresses, 5,, 6,, 011, at point B. The results are
compared with the analytical ones. Again, the formulation behaviour is almost perfect.

4.1.2. Thick cylinder subjected to internal pressure

In this example the behaviour of a thick cylinder subjected to an internal pressure P is analysed. Due to
the double symmetry only a quarter of the structure is discretized, see Fig. 6. The geometry and physical
properties are depicted in Fig. 6.

The inner and outer wall radial displacements obtained applying this numerical formulation are com-
pared with the analytical ones in Figs. 7 and 8, respectively. The numerical results were obtained adopting
a time-step of one day.

As for the first example the numerical behaviour are almost the same as the analytical ones. Information
about stability, general loading and infinite domains applications are given in examples related to the
Boltzmann model.
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Fig. 6. Geometry, discretization and physical properties.

4.2. Boltzmann model

4.2.1. Simple stressed bar

In order to verify the behaviour of the Boltzmann numerical formulation, a simple stressed bar is
analysed. The structure is modelled by adopting quadratic boundary elements, a quarter of the body is
discretized. The geometry, discretization and physical properties are given in Fig. 9.

The longitudinal displacement behaviour of point A is given in Fig. 10. It compares very well with the
analytical solution (v = 0).

In Fig. 11 the stability of the method, regarding time-steps length, is shown. One can see that the results
are very stable. The time-step length varied from 1 to 5 days. The analysis has a total duration of 405 days.

Fig. 12 shows the stresses components ¢¢| (elastic at viscoelastic part), o}, (viscous) and ay; (total) at
point B.

As for displacement, the stresses numerical behaviour is almost the same as the analytical one. It is
important to note that no superposition is used to run the Boltzmann model examples, the “jump”, in
displacement at the first time-step is the numerical solution.
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Fig. 11. Time step dependence (stability).

In Fig. 13 the displacement of point A is shown when the load is removed at day 200. The adopted time-

step is one day.

4.2.2. Tunnel subjected to internal pressure

A circular cavity is modelled by the proposed viscoelastic formulation. This example exhibits that using
the proposed formulation it is possible solving an exterior Boltzmann (or general) viscoelastic problem
using only a boundary discretization. A constant internal pressure P is applied over the interior surface of
the cavity. The cavity is modelled by adopting quadratic boundary elements, as depicted in Fig. 14. The
viscoelastic properties, discretization and geometry are shown in Fig. 14.
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Fig. 13. Displacement behaviour of point A, load removed at day 200.

The tunnel radial displacement behaviour is shown in Fig. 15. The numerical result is compared with the
analytical one, considering plane stress assumptions.

Looking at Fig. 15, it is hard distinguishing the numerical and the analytical results, what makes clear
the accuracy of the proposed methodology.

5. Conclusions

It has been shown, along the paper, a new way to perform viscoelastic analysis by the BEM. It consists in
considering the viscous elastic relation as a non-local property of the continuum. From this assumption, the
time integration should be done after spatial approximation. Following a weighting residual procedure and
a proper kinematical relation between strain velocity and material velocities of neighbour points it is
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possible to write the boundary integral representation for displacement and velocity. The main advantage
of the presented technique is that the integral representation posses only boundary values. It has been
imposed a spatial approximation for boundary values achieving a system of time differential equations.
This system is easily solved by adopting linear time approximation for velocity and boundary traction rates.

A very elegant treatment is given for the stress determination. No domain approximations were assumed
and only integral equations were applied. Linear time approximation was adopted for stress rates. The
proposed formulation has been developed and implemented for both Kelvin and Boltzmann viscoelastic
models, showing that any desired viscous model could be added to the formulation following similar steps.
Four examples are shown in order to demonstrate the accuracy, stability and generality of the technique.

Appendix A. Boltzmann viscoelastic differential relation

In this appendix some necessary steps to achieve expressions (16) and (17) from Egs. (13) to (15) are
presented. It is important to show how to manage constitutive relations to achieve expressions that are
more general.
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The elastic (instantaneous) part of the Boltzmann viscoelastic model is governed by the Hooke’s Law,

ie.:
e _ me ~im e
0 = el = EeCyj'el,s
where Cl.l;” is the usual elastic constitutive tensor, given by

C,-l;n = 20i01m + (016 jm + Oimd;1)

in which /1 and p are Lame constants, given in terms of Poisson’s ratio and Young’s modulus as:

Y ~
p=E— = E,],
A= By B
=F ! =E.nu
u= 52(1+v)— e,

Clr' = 7001 + fU(Sdjm + Sindjs) = CI'/Ee,

where, for convenience, we defined new dimensionless values 4, i and Ci’j’,”.

Using the same idea, one writes the elastic part of the Kelvin viscoelastic stress as follows:

el _ ~imve __ ~Im ve
0, = Clj &y = EveCl:/' Epp-
The viscous stress is written in a general form as:
v _ Imgve _ ~Im:ve __ L vim sve
Tij = N €im = Evellj' € = Evey €8,
The viscous stress/strain rate relation is given by the tensor nf;?’, written as:

ﬁf;ﬂ = 0215lj51m + Op,a(éiléjm + 6in15j1) = nll;n/Evm

where, as for the Kelvin model, 0, = 0, are the viscous parameters.
The inverse representation of Eq. (A.5) is

im ~lmy\— 171 1
Dzlj,- = (ij ) = B 5(51‘15]‘»1 + Gim0j1) — 1—H5ij51nz .
Applying Eq. (A.9) in Egs. (A.1) and (A.6) and taking into account Eq. (13) one writes:
e 1 i
Im — E_eD/jmo-ija

Form Eq. (15) one transforms Eq. (A.11) into
1

1 ~. .
ve __ 1y ve vy __ i
g =—DY (6] —0,)=—D
Im Im\"¥i i Im
Ey. ! 77 Eye

(03 = a)-
Assuming relation (A.7) one writes Eq. (A.12) as follows:

ve __ Y N =k sve
€ = E Dlmo—fj - Dlmni/ 8~,*k'
ve

Substituting expressions (14) and (A.10) into Eq. (A.13) and rearranging terms, results:

(A1)

(A.10)

(A.11)

(A.12)

(A.13)
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~i (1 1 kv
Em = Dljm <E— +E—> Oij — Dlmnzjk fk (A14)
Multiplying Eq. (A.14) by C(Z", given in Eq. (A.5), results:
Eve + Ee k gve
(ﬁ) = Ciye + - (A1)

Differentiating Eq. (14) with respect to time, one writes:
& = & — & (A.16)

Substituting relation (A.16) into expression (A.15) and rearranging indices, results:

Ey + E. ~k -
(ﬁ) C s Sk + nqv vk — 71;{;8,},1{. (A17)

Differentiating, with respect to time, Eq. (A.10) and substituting into Eq. (A.17) one achieves:

EveE Ak E Eve ok - Eve ~ii TNk -
(m) Corea + (m)" (EveEe>”55fo (A-18)
In order to write an integral statement with only boundary values it is necessary to impose the sim-
plification 0, = 0, = 7. In this way expression (A.18) turns into:

EE. I VEE: “m - VEve .
U e m T im ; Al
Oij (Eve —I—EE)C” Em + Eve +Ee Cz} Eim — EveE O ( 9)

This is the general rheological differential relation for the Boltzmann model. It is employed to derive the
boundary element procedure proposed here. More complicate rheological models can be introduced in the
following similar procedures as the employed to achieve Eq. (A.19).

Appendix B. Steps used to find Boltzmann integral representation

The following steps are important to indicate the way one can follow to write more complete viscoelastic
Boundary Element formulations.

B.1. Displacement integral representation

Using the following relations inside Eq. (52),

Im * % %
e EeCyf' eim = Opptin = Oyl = Oyl (B.1)
* 4 % . % .
gkle C 81'" lemslm - O-klmul«m - O-kijuiy.l" (BZ)
P
Ej 011 = MO (B.3)
results:

Ey. VEve E . *
/ uklp, dr — m / O'k,-juij dQ — E'))ﬁ / O'kljulde + m / ukl_jO',-de + /Qukib,»d.Q =0.
ve € ve ve

(B.4)
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Integrating by parts the second, third and fourth integrals of Eq. (B.4) one finds:

Eve ’))Eve . .
“pdll — Cnudl — [ o, wdQ| — cnigdl — [ o, i,dQ
Aukp Ee +Eve |:~/F o-kljn]u /Qaklj,ju :| Ee +Eve |:L th/n.lu Aakzj,ju :|

VEV . * *
E —|—CE‘Ve |:/ ukiO',-jnde — /Q ukio-fj>/dQ:| + /Qukl.b,-dQ =0. (BS)
The equilibrium equation of the analysed problem can be written as:
d-ij,j == —b, (B6)

Using Egs. (27) and (B.6), one writes Eq. (B.5) in the following form:

E +Eve * 4 % . - .
Cui(p) = z /Fukip,-dF—/Fpkiu,-dF—y/rpkiu,-dF—VCk,-u,-(p)
. E.+E,
+v[ / wiprdl + / u;;.b,-dg} plet e / ul b dQ. (B.7)
r Q Eye Q

The term Cj; is the same present in Eq. (28) for the Kelvin—Voigt model. Eq. (B.7) is the integral equation
for displacements adopting the Boltzmann model. The last integral can be transformed to the boundary,
resulting:

E +EV5 * * * . i * o 7 *
Cuui(p) = z /ruk[p,-dF—/Fp,du,-dl"—y/rpkiufdf—ka,-ul-(p)+y{/ruklpidf+bi/FBkidF}
ve

Ee EVC *
++4b,-/B,'a.dF. (B.8)
E r

ve

B.2. Stress representation for internal points

For internal points the displacement integral representation is given by:

Ee Eve * . £ - . "
w(p) = ; /Fukip,-df—/pklu dr — /pk w;dIl — yuk(p)+y{/rukip,»dl“+b,-/rb’kidf]

ve

EC EVC
p ot By, / Bdr. (B.9)
Eve r

Applying the kinematical relation (33) over Eq. (B.9) results:
EC +EV€ * Ak Ak e . * - I *
Ske(p) = E /SkiepidF - /pkieuidr - y/pkieuidr - V8k€<p) + V|:/ gkiepidr + b /Bkl( dF:|
ve r r r I

EC EVC
T b/B;udr (B.10)

ve

Remembering that the derivatives have been made with respect to the source point position, the values p;, ,
&5, and B;,, are given in Appendix C. The total stress is obtained by applying the constitutive relation (A.19)
on the total strain, Eq. (B.10), resulting:

E "/Eve yEeEve
qu(p) = / pqul dar - /ppiqui dar - /pplq ’dF - qu ke(p)

E + Eve Ee + Eve Ee + Eve
VEve A ; VEEve e VEve
+ Ee + Eve |:/F a/}iqpidr + bi / B/)lq dr:| / Bptq dr + Ee + E‘Ve C Prq k‘ (p) E + Eve O-M (.p>

(B.11)
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The forth and eighth terms at the right-hand side of Eq. (B.11) cancel each other, resulting:

_, Ey. . PEye e
) = [ T~ = | Bl =5 [ r
VEve e R — VEw .
e “ pdl+b; | B.dl'| +b;, | B, dIr - ) B.12
+ Ee -+ Eve |:/1_ O-l”qp + [_ piq :| + /I‘ piq Ee + Eve apq (p) ( )

Eq. (B.12) is the integral representation for total stress following the Boltzmann viscoelastic model. The
functions p, , 7;,, and E;q are given in Appendix C.

Appendix C. Some auxiliary values

The functions inside the kernels developed in this work are given by:

» 1 . or .
pk,'e = m {Zv(ékirve + 5eir7k) + Zbekrvi - 8rak Vyitye & + (1 - ZV)(bkine + 5ienk - 5keni
+2r7kraeni) +2V(V,ir,enk +r7ir7kne) )
-1
&, = S2(l—v)Gr {(1 = 2v)(Ouirse + Okelsi ) — Oiel s + 27k i Pe (C.1)
A . or
Bkie = gkie&’
. 2G or
Doy = m 25 {(1 —2v)0,,7 + v(5pir,q + 5,1,-;’,/)) —4r,,rir, } + 2v (npr,q roi+ngr,, r,i)
+ (1= 2v) (2n,p Fog + 1g00i + 1,84) — (1 = 4v)nid,g |, (C2)
. 1
Oig = 747“1 m— [(1 —2v) (5,),11”,,- + 0igtsp — 5,,,-r,q) +2r,7,iFy ]7 (C.3)
—x « al"
piq = piq&' (C4)
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